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SUPPLEMENT TO RM--3491-PR

SOME LIMIT THEOREMS ASSOCIATED WITH A RECURRENT EVENT

The following is intended to correct some errors in

the above Memorandum and to add a few comments which

seem appropriate. We start with errors.

Page 6, line 12 should be:

00m 1 -- AI/-- <ctAl- ~k~l

Page 17, line 8: Change 1 - y to 1 -Y.

Page 52, line 11: Change < to >.

Page 54, line 7: Change 880 to cos.

As to the supplements, we first note that Theorem

6.13 can be considerably extended, and should be

changed to read as follows:

Theorem 6.13. If e is aperiodic anldp ositive,

then

(6.29) lim P(V - k) = (EWI)- - k'
n-oo

and thus

(6.30) l.m n~l = k) .k

n P(Vn = J) Tj

More generally, we have that a necessary and sufficient



condition for (6.30) to hold is that (6.21) be satisfied.

Proof. We have

P(Vn - k) - P(%n+k--i > k - l)-- P(Yn+k > k)

and as P(Yn+k - r) - Un+k-r q,, we have that

k k-I
(6.31) P(Vn - k) - ZUn _ - ZUn+kj-1q"

n J-0 n~k-j J.0 _~

Now if e is aperiodic and positive, (6.29) follows

from (6.31) upon taking limits by the renewal theorem.

If (6.21) is valid then (again from (6.31)) we have

lim un-I P(Yn+m - k) - k,

which establishes (6.30) for the case of J - 0. The

general case then follows at once from this result.

Conversely if (6.30) is valid then

q-lim qO + q
n4 P (v -0) nI

and thus

un . 1.
n-eo Un

As is clear from Sec. 6, a great many results depend

on whether or not lim un+i/un - 1. In general, this

limit need not exist. In this regard, it might be of

interest to point out that lie unl/n always exists.
n

More specifically, we have the following:
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Theorem. If e is an aperiodic recurrent event,

then

n- '

where R is the radius of convergence of the series

X Unzr
n0Proof. loet e be aperiodic and let lrn sup u nl/n = R

Then for infinitely many n we have for any e,

0 < a < 1/H, that

Suppose the above is satisfied for n - m. Then for

any k m 0,1,2,..., we have

u'n2 (.)k2 1 _ F)n

But since e is aperiodic, we have umn > 0 for m > No0*
If n > 2m then n - (k + l)m + r, k = 0,12,...,

0 er <m, and thus

1an - um+rŽ y) um+rŽ2(1£)A>O

where A - mf u~r >O0. Hence if n >2m >2N0 , we

have ,~

~1/n > (I_-)

and thus lrn inf un 1/n >1/R -e But as C was

arbit~rary, we must have lim inf u n1/n >1l/R.
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Remark. The above argument is a straight adaptation

to the setting of general recurrent events of an argument

due to Kakutani in (2] to prove the result for the

special case of "return to zero," for integer-valued

random variables.
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PREFACE

Part of the Project RAND program consists of basic

supporting studies in mathematics. The mathematical research

presented in this Memorandum deals with the theory of

recurrent events, a subject of basic interest in the theory

of probability and its military and scientific applications.
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SUMMARY

The asymptotic behavior for large n of various quantities

associated with a recurrent event is investigated. The

results are applied to give information about certain

functionals of sums of independent random variables.
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SOME LIMIT THEOREMS ASSOCIATED WITH A RECURRENT EVENT

1. INTRODUCTION

In this Memorandum we study the asymptotic behavior

for large n of various random sequences associated with a

recurrent event, extending results found in [4], (7], (8],

[9], and [12]. The results found for general recurrent

events are then applied to the study of various functionals

of sums of independent random variables, with the explicit

purpose of trying to encompass results on the fluctuation

phenomena of sums within the framework of the general

theory of recurrent events. However, these are to be

looked on as examples only, since no attempt has been

made to try to exhaust this method. Applications to other

Markov processes are not considered, but no doubt could be

given.

In summary, then, Sec. 2 is devoted to a review of

the definitions and notational conventions which are used

in this paper. In Sec. 3 criteria for transience,

positivity, etc., are presented in terms of the sequence

(EYn 1, where Yn is the time, as observed from n, that the

event last occurs. Section 4 is devoted to finding

explicitly the joint limiting distribution of (Nns Yn),

where Yn is as above and Nn is the number of occurrences

of the recurrent event by time n. In Sec. 5 other joint
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limit distributions with Nn are given, and conditional

limit distributions of Nn are found. Local limit theorems

for the various random sequences associated with recurrent

events are given in Sec. 6. In Sec. 7 some strong laws

connected with Nn are investigated. The results of these

sections are applied to sums of independent random

variables in Sec. 8. The criteria of Sec. 3 are applied to

give useful results on ladder points, which contain

results implicit in the work of Spitzer in [17]. The joint

limit distribution of the maximal partial sum and its time

of occurrence, and the conditional limit distribution of

the maximum given its time of occurrence, are given for

the special case of summads of mean zero and finite

variance. For integer valued Sn the recurrent event

"Sn = 0," is also investigated. The paper concludes with

an Appendix containing extensions of known Abelian and

Tauberian theorems that are frequently useful in

probability work and are needed in the proofs of some of

the theorems in the paper.

2. PRELIMINARIES

Let e be a recurrent event on the nonnegative integers,

with waiting times (WkJ, these being independent and identi-

cally distributed, positive, integer-valued, random variables
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that can also assume the value . We recall that e is

called

(i) transient if P(WI < P) = p < 1,

(ii) certain if p = 1,

(iii) null if p = 1 and EW1 =

(iv) positive if p = 1 and EW1 < U

(v) periodic of period r if e can only occur

at times nr for n = 0, 1, 2,

Definitions.

(2.1) Nn = sup (k: W1 + ... + Wk < n] (number of

occurrences by time n),

(2.2) Yn = W1 + W2 + ... + WNn (time of last occurrence),

(2.3) Vn = W1 + ... + WNn+1 - n (time till next

occurrence as measured from n).

For Iti < 1, denote

(2.4) F(t) - E[t l W < = P(w - k)tk

k=l

(2.5) U(t) = ; P(Yn = n)tn (y 0 0),
n-0

aa
(2.6) T(t) - 7 P(Y n o)tn = X P(WI > n)tn.

n-0 n-0
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In addition, let

un = P(Yn -n), q n P(Yn 0).

Unless otherwise specified, t will always be such that

I ti < I and x, y will be quantities such that lxi _< 1

and Ijy < 1. If X is a random variable and A an event

we shall denote J X dP by E(X; A).
A

3. CRITERIA FOR RECURRENT EVENTS

Lemma 3.1.

"* Nn x~n1

(3.1) ; tn E(y =n x n T(t)[l - yF(xt)]-I
n=O

Proof. P(Nn = k, Yn = r) = P(W 1 + ... + Wk = r)P(Wk+l > n -r),

and 3.1 follows upon taking generating functions. We shall

need (3.1) in the next section. All we need here is the

special case with y = 1, which is

(3.2) ;- tn E x n = T(t)(l F(xt)]".
n=0

Theorem 3.1. Let Ak = E(Yk - Yk-l). Then

(3.3) U(t) - exp z tk/k Ak
k=1
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Remark. This curious exponential identity shows

that knowledge of LE Yn] for all n completely determines

the recurrent event e. It came to our attention through

Professor M. Dwass.

Proof. Differentiate (3.2) with respect to x at 1

to obtain

(3.4) (i - t) t tn-I E Y n = U'(t)/U(t).
n-O

Thinking of the left hand side as a known function of t,

we see that (3.4) is a differ~ential equation for the

function U(t). Since U(o) - 1, the right-hand side of

(3.3) is the unique solution to this equation. We are

now in a position to prove the following result.

Theorem 3.2. Suppose that e is a recurrent event

and that A = E(Yk - Yk-l)" (AO - 0). Then

(3.5) 1- p - P(W ) = e l k/k

If e is aperiodic, then

k= l (1 - k)/k(3.6) EW 1 - e
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in the sense that both sides are finite or infinite

and always equal.

Proof. Since Ak > 0, (3.5) follows from (3.3) and a

generalized version of Abel's theorem. Now suppose e is

aperiodic and that Z(l - Ak)/k converges. Then

EW1 = lim T(t)t-l-

et k/k e Z Ak tk/k= lima e e

t-l

1 - Ak tk

= lim e k=J
t-l

Since ex is continuous in x, the above limit is e

by Abel's theorem. To establish the converse, we must

show that

"a 1 - 6k tk
lim Z k t EW1 <
t-l k=l

1 - Ak
implies that Z --- 7- converges. If we could show that

lim Ak = 1, then the desired conclusion would follow at
k-.

once from Tauber's theorem. To see that lim Ak = k,
k-..

observe that
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(3.7) (1 - t) T- An tn = tF'(t)U(t)(1 - t)

and

F'(l) - EW1 <

and that the series U(t)(l - t) becomes at 1 the series

u + (u2 - ul) + ... lim u ,
n-*w

where un = P(Yn = n). Now, by a well-known renewal

theorem (see [83) we have lim un = l/EWI, and so the
n---

series in (3.7) converges at 1 to 1 by Merten's theorem.

This completes the proof.

As a corollary of the proof we have the following.

Corollary 3.3. If EW1 < * and e is aperiodic, then

lim An = lim E(Yn - Yn-l) = 1,
n-- n-a

- (i-n)
and the series X. converges to a finite positive

n=l n
value.

Theorem 3.4. Suppose e is a null recurrent event.

If for some p (0 < p _< 1) we have

( 3 .) l m - 1 n
(3.8) lim n x Ak = lim Yn/n = ,

n- k=l nk -
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then

1 F (t) =(1-t)ft L[1/(l-t)]

where

k•l (• - •k)tk/k
(3.9) L[l/(l-t)] = e

is a slowly varying function of i/(l-t).* Conversely, if

1 - F(t) = (l-t)O h[i/(l-t)]

for some 1 (0 < 0 ! 1) and slowly varying function h,

then (3.8) holds and we must then have h(x) = L(x), where

L(x) is given in (3.9).

Proof. Lamperti in [10] showed that (3.8) and

1 - F(t) = (1 - t)P k(,•)

were equivalent, where h(x) is a slowly varying function.

To identify h[l/(l-t)] as L[i/(l-t)], observe that by (3.3), we have

- •t(l-t) - £ tk/k Ak~
i-t)-1P[l - F(t)] =e pt~-)e ztk/kA

= e kke ,x k

which establishes the result.

*A function L(x) is called slowly varying if it is
positive for x sufficiently large, and if for each positive
a, we have L(ax)/L(x) - 1 as x-a.
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Remark. When EW1 <U, 8 =1 and we have shown

that lim Ak - I. It in an open question as to when this

is true for 0 < 0 < 1. (See, however, theorem 8.3.) In

line with this remark it might be well to point out that

there not only exist recurrent events for which

lim ak = •, but there is even a recurrent event for which
k-4

A k-. To see this, observe that if 0 < 0 < 1, then if

Ak - we have by (3.10) that

F(t) = 1- (i-

Thus fk = (_)k (k)' which is positive and < 1, and

F(l) = kJl fk = 1, showing that these (Ak) do indeed

determine a recurrent event.

4. THE JOINT DISTRIBUTION OF (N , Yn).

This first theorem is only to establish the case of

greatest interest.

Theorem 4.1. If e is transient, then (Nn' Yn) con-

verges with probability one to a finite random vector

(N, Y), and

(4.1) E(xy yN) = (1 - p)[l - yF(x)]-I



-10-

If e is recurrent, then (Nn, Yn) converge to -with

probability one, and if e is positive, then

(4.2) (Nmn, Yi/n)-- (l/EW,, 1)

with probability one.

Proof. Since a transient event takes place finitely

often with probability one, (4.1) follows from (3.3); (4.2)

is well known (see e.g., [6]).

Thus, the case of greatest interest will be the null-

recurrent case. The limit marginal distributions for this

case were first found by Feller in (9] for Nn and

independently by Iamperti in [12] and Dynkin in [8] for Yn"

Theorem 4.2. Supose e is a null-recurrent event.

Then in order that there exist constants an > 0, bn > 0

such that (Nn/bn, Yn/an) should converge in distribution

to (N, Y) having a nondegenerate distribution, it is

necessary and sufficient that

(4.3) 1- F(t) = (1 - t)O L

for some 0, 0 < 0 < 1, and some slowly varying function L(x).

If condition (4.3) is satisfied, then we may choose

(4.4) aan = n, bn = nP/L(n)
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and the distribution of (N, Y) will be uniquely determined

by its moments:

(4.5) E(N m yk) = (_m O(u+))= rmj3+k+i) k

(Remark: An explicit formula for the (N, Y) distribution

will be given below in Corollary 4.3).

Proof. Necessity: This follows at once from known

facts. If (Nr/bnI Yn/an) is to have a nondegenerate limit

distribution, then clearly Nn/bn must have one. But it

was shown in [4] that this is true if and only if

condition (4.3) holds for some P, 0 < 0 < 1.

Sufficiency: By (3.3) we have

(4.6) z E[xn y]Nn = T(t)[l - yF(xt)]-I
n=O

which is an analytic function in (x, y, t) for lx _< 1,

IY _< 1, Itl < 1. Taking the m-th derivative of (4.6) with

respect to y at 1 results in

(4.7) ; tn E(xyn N(m)) = mIF(tx)m[l - F(t)](l - t)-1
n=O n

[1 - F(xt)]-(e+il)



-12-

where

N(m) = Nn (Nn ) ... (N -m+l).

Set x - e %(-t) in (4.7) and expand in powers of X to

obtain

(4.8) F,(-)k/k X' (1_t)k ; tn E(Y-n N(nm))
k n=O n n

= (I - F(t)](l-t)-iF(te-X(l't))m[l - F(te-X(l-t)]-(m+l)

As t-l-,

1 - e" X(l-t) - (I + X)(I - t)

and so, taking account of the slowly varying nature of L,

we obtain from (4.8) and (4. 3 ) (after a slight rearrange-

ment)

(4.9) lim X Xk(l - t)k+l (- t)OTn it n. tn E(Yn N(m))
t-In

k!ml (1 + )-P(m+l)
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Since the quantity in (4.8) is analytic in X, t for

Iti < 1 and X > 0, and the right-hand side of (4.9) is

analytic in X at X = 0, we obtain from (4.9)

(4.10) lim_ (1-t)k+fk zT ~ t~ E(Yk- N~m) - Y__l N1Sm~)_n n=onn - nl
t-l"

= _k k., m.' (-7(m+l)).

Now, E(Y- N(m)) is,for each fixed k and m,a monotone increasing

function of n. Hence we may apply Karamata's Tauberian

theorem (see [5], P. 507) to (4.10) and conclude that

(4.11) E(N(m) g(k)) - nrm nk L(n'-m (_)k k! m'l- ((m+l))n~ nF(mI3+k+l) \

Finally, as E(N(m) Yn) - E(Nn Yn),n *, we have (4.5).

To complete the proof, we must show that these moments

uniquely determine a distribution. By theorem 1.12 of (15]

this will be true provided that the series

(4.12) ; E(N 2 n + y2n) 1/2n =

n=O

A simple computation shows that
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E(N2n + y2n) _ 1/2, n-•

and so (4.12) certainly holds. This completes the proof.

If we set k = 0 in (4.5), we obtain the known result

that

(4.13) EN'- = l/r(m+l) .

These are known to be the moments of a distribution on

the positive axis with density

(4.14) g (x) = (rp)-I 1 (_)-Il/j, r(pj+l) sin irj x
J=l

(See (4]). If we set m = 0 in (4.5), we obtain the known

result that

(4.15) Eyk = _k (-_)

which are seen to be the moments of a distribution on the

interval [0, 1) with a density

(4.16) f'A(x) = sin r/7r xP-1 (i-x)-.
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It is possible to give an interesting characterization

of the distribution of (N, Y) and even to write down its

density function.

Corollary 4.2.* (N, Y) is distributed like (N YO, Y),

where (N, Y) are independent, and Y has density given in

(4.16), while N is a positive random variable width a

distribution uniquely determined by its moments:

(4.17)m =~ (re+l)! ' f(tl)
(4.17) = r(l+ 0 (Ml

These are the moments of a distribution on the positive

axis with density

(4.18) hM(x) = r(p+l) x g M,

where g.(x) is given in (4.14).

Proof. A simple calculation shows that

(41 ) k k! m![ -pm+l = (m+l)! r(a+I) r(p,(m+l))

F4mfý+k+l -Bkl) =F(l+p(mn+l)) r(O)F(•m+k+l)

and

*We are indebted to Prof. M. Dwass for bringing this

corollary to our attention.
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(4.2o) Ey k

The result now follows from (4.20), (4.19), and (4.17).

Using this corollary, we have (N, Y) has a density on

(0, -) x [o, i] which is

(4.21) K (x, y) = h1(xy-1) y-P f (y) =

r(O) sin rp/2. (-) j-i/jJ sin rpJF(PJ+l)x-Jy-3J-l(l-y)-O.
J=l

The case of B = 1/2 is of special interest. For this

case we have

(4.22) (i) gl/ 2 (x) = 7.-1/2 e- x 2/4

(ii) r hl/ 2 (x)dx = 1 - e- x /4

0

(iii) K / 2 (x, y) = x/2r e- x 2 / y- (i-y)-/2

Corollary 4.3. Let Y n = n - Yn (time since last

occurrence of e). Then condition (4.3) is both necessary

and sufficient for (Nn/bn, Yn/n) to converge in distribution

to (N, Y) having a nondegenerate distribution. Moreover

we have
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(4.3)mE kJ , (_))
(4.23) E(Nm )= mr(k+l+(m+) )

which are the moments of a distribution on [0, x) [ [0, i]

with density

(4.24) kl_,(x, y) = K 0(x, 1-y)

where K (x, y) is given in Eq. (4.21).

Proof. We have

(4.25) lir E[(Nn/b2 (7n/n)Ak 7 lim E[(Nn /b (1I- Yn/n)k

n-- n-n

= kNm (l-Y)k) = ENm E Yfm (l-y)k

A simple computation now completes the proof.

5. OTHER GLOBAL LIMIT DISTRIBUTIONS

From the joint distribution of (N, Y) we may obtain

the joint limit distribution of (Nn/bn, Vn/n) and

(N/b N n +[rn] - Nn

nb bn

Since the proofs of these follow
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closely those used by Lamperti in [123 for Vn/n and Dynkin
(8 forNn + i]- Nn

in [81 for + [rn] respectively, no proofs will beb n

Included.

Theorem 5.1. Condition (14.3) is both necessary and

sufficient for (Nn/bn, Vn/n) to have a nondegenerate limit

distribution. The density of the limit distribution is

(5.1) h 0 (x(l+u))(l+u)O f (11+u)(l+u)- 2

where h. and f, are given in (4.8) and (4.16, respectively.

Theorem 5.2. Under condition (4.3),

Nn +rrn]- Nn

(5.2) lim P(N/b < x, Nn > u)
n-nbn

x r Go J"0- K" P0 (-0y, s) dy ds,
00

whereK 0 is given in (4.21) and G P(x) is the stable law

of index P with laplace transform

e- XX dG (x)= e-

0

From corollary 14.2, it follows at once that
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P(N < x Y = Y) = P(N < xy-B)

and so P(N < x I Y y) is a continuous function of (x, y),

0 _1 x < U, 0 < y < 1. This makes it plausible that for bn

given in (4.4), we have

(5.3) !ira P(Nn/bn i x I Yn = [sn]) = P(N < x s-P)

when condition (4.3) holds. Let us first observe that

if (5.3) is to hold for all s, 0 < s < 1, then condition

(4.3) is necessary. However, we have been unable to show

that (4.3) is sufficient, and can only establish (5.3)

under a more stringent condition.

Theorem 5.3. Suppose e is a null-recurrent event

such that

(5.4) P(Y n = n) - n P- /r() L(n)- , n--

where L(n) is a slowly varying function.* Then (5.3) holds

for each s, 0 < s < l,and in fact uniformly for 0 < c < s < 1.

Proof. P(Nn/bn _< x Yn = [sn]) = P(N[sn]/bn < x Y~sn]= [sn])

and so

lim P(Nn/bn _< x I Yn (sn]) = Lnm P(Nn/b[n/s] _ x I Yn = n)
B o-yL m n-by

By Theorem 3.4, L(x) must then be given by Eq. (3.9).
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Now, by known properties of slowly varying functions (See

[ii]), we have b[n/s]b -1-. s- for o < s < 1, and uniformly

so for 0 < e < s < 1. Thus all assertions of Theorem 5.3

will be established if we show that under (5.4),

(5.5) lim P(Nn/bn < x I Yn = n) = P(N < x)
n-n

In (7], Dwass has shown this to be the case if L(n) is a

constant. To establish (5.5) for a general L(n) we

need the following:

Lemma 5.4. If Cn is the (m+l)-st convolution of the

sequences (P(Yn = n) with itself, and if condition (5.4)

holds, then

n 13nm-i1 L~n)-(m+l)

Proof. The proof is a direct consequence of

Corollary (A.5) in the appendix.

To complete the proof of (5.5), we observe that

z tn E(x n; Yn = n) = (1 - xF(t)]",

and thus
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z tn E[N(nm); Yn = n] = ml [1 F(t)]"(r+l),

from which it follows that

E(N(m); Yn = n) = m! C

where Cn is given in the lemma above. Hence,

E(N(m)IYn = n) -•j - ' [nP/L(n)] m

(m+l)!.r(l+) [no/L(n)]m

which by (4.17) are the moments of N.

Remark. At this point we shall pause to point out

the connection between condition (5.4) and condition (4.3).

If (5.4) holds for 0 < 0 < 1, then a well known Abelian

theorem (see 15], P. 460) assures us that

(5.6) 1 - F(t) ~ (i-t)p L(i/i-t), t-i-

and thus condition (5.4) holds. On the other hand, if

(4.3) holds, then in general one may conclude (via Karamata's

Tauberian theorem) only that
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n
(5.7) E P(Y k) n LF(I ), n

k=O

On the other hand if we know that P(Yk = k) is a monotone

function in k, then we may conclude (see Theorem A.3 in

the Appendix) that

(5.8) P(Yn = n)

For future reference let us record at this point the

following equivalence relation:(5.6) and

(5-9) P(n=O- n-P L(n)

are equivalent. To see this, observe that if (5.6) holds,

then

T(t) - (1-t)'-I L(1)

and thus by Karamata's theorem

P(YI = 0) + + P(Yn = O) nI-P L(n)1 ""~ (1-P) •

But, since P(Yn = 0) is monotone, we have by Corollary A.3

that (5.9) holds. Conversely, if (5.9) holds, then the
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Abelian theorem mentioned above shows that

and thus (5.6) holds.

Theorem 5.5. Suppose condition (5.4) holds. Then

for 0 < a_< 1, 0 < s < L, and bn = nO/L(n), we have

(5.10) lrm P(Nn/bn < x I Y(n] [sn]) - P(Ns
n-4-

where N Ls is distributed like

sN 1 + (1-z)f N I

Here N1 and N1 denote two random variables independent of

each other and distributed like N and N respectively.

Proof. For X > 0 we have

(5.11) E(e- X Nn/bn I Y[na] = [ns))

SE[e- ý N[ sn]/bn Y(ns] = [ns]]E[e- X Nn-[an]/bn.

By the remark following Theorem 5.4 we have that condition

(4.3) holds. Hence we may apply Theorems 5.3 and 4.2 to

Eq. (5.11) to conclude that
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lim E[e X Nn/bn Y[nz]= Ee X s3 N ]E(e- (I-)

n-es

which establishes the assertion made in (5.10).

6. LOCAL LIMIT THEOREMS

In this section we shall investigate various "local

limit theorems" for the functionals associated with a

recurrent event. We start our investigation with Nn,

where we have the following general result.

Theorem 6.1. For any recurrent event

n+m
Z P(Nr = k)

lim r=O pk/pj
n
Z P(Nr = J)r=-O

where m is fixed and p is given in Eq. 3.5.

Proof. It is clearly sufficient to establish (6.1)

for the special case of j = 0. From the relation

n
P(Nn = k) = j P(W 1 + ... + Wk = n-J) q,

we obtain

n n
Z P(Nr - k) - I P(W + + Wk < n-J) qj

r=O J-0 -)
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But for each fixed r we have

P( + ... + < n-J) - 0 as n-,qn+r JOPW

and thus by an elementary theorem on Norlnd summability

(see [31, p. 20) we have

n+m n+m
Z P(Nr k) z P(W + ... + Wk < n-J) q

lir r=O = lirn P=0
n- n n-an

Z P(Nr 0) n-Z q
r=0 J=O

= lim P(W 1 + + Wk < n) =p
n-ue

which establishes (6.1) for the case of j = 0.

Under certain general conditions it is possible to

greatly improve upon Theorem 6.1. Thus we have the

following:

Theorem 6.2. If e is transient, then

lim P(Nn = k) - pk( 1 -p)
n-.m

and thus

P(Nn~ = k) kJ

(6.2) lim n+m k= k/j
n-• (N n J7= /
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If e is null and

(6.3) 1 - F(t) (I-t)f )

where 0 < p < 1 and L(x) is a slowly varying function,*

then

(6.4) lir r(a-0)nOL(n)- 1 P(Nn = k) = 1,
n-em

and thus (6.2) holds in this case as well.

Proof. If e is translent, then it follows from Theorem

4.1 that Nn converges to a finite random variable with a

geometric distribution of parameter p. Now suppose (6.3)

is satisfied. If we set x = 1 in Eq. (3.1), we obtain

£ tn E yNn [1-F(t)](l-t)-l[l-yF(t)]-I
n=O

Thus by Karamata's Theorem we have

n Nr n1-0 L(n) (l-y)"1

E Ey y
r-O

Nn

But, for 0 < y < I we have that E y is monotone in n, and

WL(x) must then be given by Eq.(3.-.
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thus we may apply Corollary A.3 in the Appendix to conclude

that

(6.5) lim r(l-p)nO L(n)- 1 E y n _ (l-y)-I
n-.-

Let

an,k = r(l- )n1 L(n)-I P(Nn = k)

Now, it follows from (6.5) that an,k is bounded for each

value of k, and thus we may extract a subsequence (by

the diagonal procedure) anrk which converges to, say,

"ak as r--. But then it follows (again from (6.5)) that

"ak = 1. If then there were another convergent subsequence

of an,k, the same argument as used above would show its

limit to be 1. Thus we have

lim an,k = 1,
n-No

which is the same as the assertion made in (6.4).

When condition (6.3) holds (or more generally when

(6.2) holds in the recurrent case) we have the following

curious result.

Corollary 6.3. If e is certain and (6.2) holds, then

for 0 < j < k we have
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(6.6) lir P(Nn = J I Nn < k) = (k+l)-.
n-om

Proof. If e is recurrent, then p 1 1, and if (6.2)

holds, we have

k
lim X P(Nn = r)/P(Nn = J)= k+l.
n-, r=O

From this (6.6) is evident.

Remark. It is easy to exhibit aperiodic positive

events for which (6.2) fails to hold, and it can be shown

that (6.2) may also fail for null events.*

Turning our attention next to Yn' we have the

following result.

Theorem 6.4. For any recurrent event,

n+m
X P(Y"r k)

(6.7) lim r=O= u

n- z0 P(Yr =J)
r=O =

Proof. (6.7) is a simple consequence of the

following two facts:

(6.8) P(Yn = k) = uk qn-k

*The null event given in the Note proceeding Theorem 6.5
provides an example.
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and

(6.9) lnm (no qr-= (rX q =

n-es r=-0-

Again, as in the case of Nn, we may improve upon

this result in many instances. Thus, if e is transient,

we have P(Yn = k) -uk(l-p) as n- and thus

(6.10) lrn P(Yn+m - k) u.(.0 n- l Pm n = 3T-ukuj•

More generally, it is easily seen from (6.8) that in order

that (6.10) hold, it is both necessary and sufficient that

(6.11) lim qn+_l 1n-,f qn

In the transient case this is always true and in the

certain case we have the following simple sufficient

conditions.

Theorem 6.5. If e is certain, then (6.11) holds if

either of the following two conditions is satisfied;

(i) qn - n-a L(n) for a > 0 and some slowly

varying function L(x).

(ii) e is null and un is monotone.
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Note. If 0 < a < 1, then by the remark following

Theorem 5.5 we have that (i) and condition (4.3) are

equivalent, and in this case L(n) is given by (3.9).

It is easy to see that (6.11) may fail in the

positive aperiodic case. Indeed, it may not even be

possible to write the ratio in (6.11) (e.g., if Wi is

bounded). In the null case the following example shows

that (6.11) may also fall. Take P(W 1 - k) - 0 unless

k - 2J and P(W 1 - 2J) - (1/ 2 )J. Then qn = ( 1 / 2 )r ,f

2 r < n < 2 r+l. We then have q= 1 i.o. and

thus lim sup q > 1. On the other hand qn/qn-l = 1/2

if n - 2 r for r = 0, 1, 2, ... , and thus lm inf q n/qnl _< 1/2.

Proof. If (i) holds, it is easy to see that (6.11)

is true; so we need only establish (6.11) when (ii) holds.

If e is null, then qn > 0 for all n. For if not, then for

some n0 we have qn = 0 and thus qn = 0 for all n_> n which

would give P(Wl < no) - 1. Consequently EW1 < 0, a con-

tradiction. From the monotoneity of qn we have

(6.12) qn+l/qn < 1

From the relation

n
1 - Un-k q k

k-O
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it easily follows that

n-i
qn - Z k(un-l-k - Un-k) > qn-l(l-Un).

k-O

By the renewal theorem (see 13], p. 26) we have u - 0,

and thus

(6.13) lim inf qrqn > 1.

Combining (6.12) and (6.13), we obtain (6.11).

Corollary 6.6. If (6.11) holds, then for 0 < J < k

we have

(6.14) lim P(Yn Yn < k) uj(uO + .. + Uk)

Proof. Obvious.

If e is null and satisfies condition (5.4), then we

have the following local version of the generalized arc

sin laws for Yn"
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Theorem 6.7. Assume condition (5.4) holds. Then

(6.15) P(Yn - k)kl-P (n-k)P = sin r r + o(l)

where o(1) converges to zero uniformly in n, k as

min (k, n-k)

Proof. By the remark following Theorem 5.5 we have

that if (5.4) holds, then

qn "(1:03

Thus, from (6.14) we have

(6.16) P(Yn = k) -kB 1 (n-k)-P L(k)-I L(n-k) 1

as min (k, n-k) -. But, since L(k)- 1 L(n-k) - 1

uniformly as min (k, n-k) a * and

1 sin a

we see that (6.15) follows from (6.16).
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Corollary 6.8. If k [sn] for 0 < s 1< , then

(6.17) lim nP(Yn = k) sin i r ý s-1 (ls)-1
n-,

and the convergence is uniform in s for 0 < e < a < 1.

Proof. A direct consequence of Theorem 6.7.

Turning our attention to 7n = n - Yn we have the

following result.

Theorem 6.9. For any recurrent event e

n+m

Z P(Yr- =k)

(6.18) lim r=On =q/qJ
x- P(Yr = J )

r=-O

Proof. This result follows from the relation

(6.19) P(Yn = k) = Unk qk I

by an argument very similar to that used to prove the

corresponding result for Yn" The details will therefore

be omitted.

Going to the strong version of (6.18), we have the

following.

Theorem 6.10. In order that
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(6.20) lim P(Yn+m - k)
n-- P(Yn" J)

it is necessary and sufficient that

(6.21) lir un/uni1 - 1
n-en

In order that (6.21) hold it is sufficient that one of the

following conditions hold;

(i) e be aperiodic and positive.

(ii) un be eventually monotone and e be null.

(iii) condition (5.4) be satisfied.

Proof. (6.20) holds if and only if

(6.22) lim P(Yn = k) q
n- P(yn = 0)

However, it is apparent from (6.19) that (6.22) holds if

and only if (6.21) does. That (6.21) holds under condition

(i) is a direct consequence of the renewal theorem (see [3],

Sec. 6), while the validity of (6.21) under (iii) is obvious.

It remains then only to demonstrate that (ii) implies

(6.21). To show that this is true, observe first that by

assumption, there is an n0 such that n > n0 implies un
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is nonincreasing. If e is null, then un >0 for n > no,

for if um - 0 for m > no, then un - 0 for all n > m,

and thus Z un < a, which is a contradiction. Thus if

n > no, we have un+1 < un and thus

(6.23) un+i/un < ".

On the other hand, if n > no we have

n n
Un+l ' x P(W1 - n-k)uk > Z P(W > n-k)uk

k-O k-n0

>un P(W1 _S n+1 - no)

and thus

(6. 2 4) lim inf Un+l/un >

Equation (6.21) now follows from (6.23) and (6.24).

Corollary 6.11. If condition (5.4) holds, then

(6.25) lim P( n - k) (n-k) 1'P kP - sin ir r + o(l),

where o(l) converges to zero uniformly in n,k as

min(k, n-k) - a.
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Proof. The result follows directly from Theorem 6.7

and the definition of Tn.

We shall conclude this section with the investigation

of Vn. As with the preceding quantities, we first have the

following general result.

Theorem 6.12. For any recurrent event we have

n+m
z P(Vr = k)

(6.26) lim r=0 = qk/qJn-, X. P(Vr = j)
r=O

Proof. It suffices to establish (6.26) for the case

of J = 0. From the relation

P(Vn > kYn > j) = P(Yn+k > k+J),

for k > 0 we obtain

n-1
P(Vn = k) = X ur P(WI = n+k-r).

r=O

Using the fact that

Un+r (u + ... + Un)- 1  0 as n-,

we obtain for k > 0
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n+m n+m
(6.27) nm rE° P(Vr = k) E Ur(P(Wi < n+m+k+l-r)-P(Wl < k))

nnln'ow X P(Vr - O) n- u0 + + un
rO

- urn (P(W _< n+m+l+k-r) - P(W1_< k)) - qk
n-e-

On the other hand, if k = 0, then

n+m
z P(vr = 0)

(6.28) lrm rn 'r=o°)

n-- Z P(Vr = O)
r=O

Equations (6.28) and (6.27) together establish the special

case of (6.26) for j = o.

For the strong version of Theorem 6.12 we have the

following.

Theorem 6.13. If e is aperiodic and positive, then

(6.29) lrm P(Vn = k) = 1/EW1 qk

n-e

and thus

(630) lim n+m -k)
n-, P(Vn J)- kqj
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On the other handif condition (5.4) holds, then

(6.31) P(Vn - k) - qk nI-1 /r(P) L-(ln),

and thus (6.30) is valid in this case as well.

Proof. We have

P(Vn - k) - P(yn+k-I > k-l) - P(yn+k > k)

and

P(Yn+k m r) = Un+k-r qr"

Thus,

k k-l
(6.32) P(Vn - k) = Z Un+k-j qj = jUn+k-lj qj

Now, if e is aperiodic and positive, then the renewal theorem

assures us that

Un " i/'lW 1 as n-w,

and thus (6.29) follows from (6.32) upon taking limits. On

the other hand, if condition (5.4) is satisfied, then

Un ~ f r(p) (3

and (6.31) now follows from (6.32).
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7. A STRONG LIMIT THEOREM

If e is a positive-recurrent event, then Nn/ENn 1

with probability one as n-a. On the other hand, if e is

null recurrent, then Sec. 3 shows that under very wide

conditions Nn/ENn has a nondegenerate limit distribution

and so Nn/ENn will not converge to 1 in probability. The

theorem presented below shows that in a certain sense Nn

does behave like ENn. For the special recurrent event,

"return to zero," in a one-dimensional random walk, it

becomes Theorem 6 in [2]. The proof in the general

case is almost the same as in the particular case in [2),

and is presented only for completeness.

Theorem 7.1. Let Un = 1 if the null-recurrent event

e takes place at time n, and let Un= 0 if not. Take

rn = ENn and un = EUn. Then

1 n(7.1) lim (tn rn)- n u k/rk 1
n-.m k=l

with probability one.

Remark. The above result perhaps gains in interest

by comparison with

(7.2) (4n Nn) n
Z Uk/Nk - 1, with probability one.

k=l
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(7.3) (tn rn)-1 . Uk/rk - 1,
k41

both of which are a direct consequence of the Abel-Dini

theorem.

Proof. As (7.3) shows,

n
(7.4) E Z Uk/rk = nn + o(tn r n),

k=l

n 2 n 2 n n

(7.5) E Zu uk/rk) = z + 2 Z u z/P
k= k= J=k=J+1

Hence,

,nnUk(l-Uk) n n U k-A-uk

(7.6) var {_z uk/k} l 2 n 2Z u J/Uj X k
1= j=1 k=J+l k

Now, if n-J < J+l, then

n -A u kr
z k j < 1/ n_ < =-

k=j+l k

while if n-J > J+l,
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n U k_- u k J+l

k=j+l k k=l uk

for J > Jo, where Jo is such that 1jo . Hence,

n
var fkz Uk/rk} = O(tn rn)k=l

Now, Chebyshev's inequality says that for any e > 0,

(7.7) P (Iz uk/rFk - Ln rnI > e tn inn] = O(n rn)-I

Since e is null recurrent, in /e n 0 as n-, and so we

may choose a subsequence nk such that

r - ek 2
n k

Thus,

nk(7.8) (&n r'nk)-1 nk Uj/in - 1 as k-•

k J=l

by the Borel-Cantelli Lemma.

To finish up the proofwe next observe that if

nk < n < nk+l, then
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n k

(7.9) (4.nr )r z1 U Jijk+l k=l

n )- k+l
<(n kn,- Z j/rj < (tn rnk k= uk/rk•

-k=l -k --1l

But rnk÷/r n. +1 1 as k- , and so (7.1) follows

from (7.8) and (7.9).

If e has waiting times which satisfy condition (4.3),

then the theorem can be improved thus:

Corollary 7.1. Suppose condition (4.3) is satisfied.

Then

1n Uk

(7.10) (L Ln n)- - 1 with probability one.
k=l nP/L(n)

Proof. Condition (4.3) is equivalent to ENn - nP/L(n).

Now tn L(n) = o(tn n), n-. To see this, we note that

any slowly varying function can be written in the form

n

L(n) = a(n) exp jE e(t)/t dt,
1

where a(n) - c > 0 and e(n) - 0 as n-m. (See Karamata [11]).

From this, the above corollary is immediate. Thus
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tn E Nn ptn n as n-, and (7.10) follows.

There are several restatements of (5.1) which are

interesting, and we gather these together in the following

corollary.

Corollary 7.2. Let ENn = g(n). Then

(7.11) (tn g(n))- z g(W1 + ... + Wk) - 1 with probability one,
k=l

r1

(7.12) tn g(W1 + ... + Wr)'l £ g(W1 + ... + Wk)- 1
k=1

with probability one, and if condition (4.3) is satisfied,

then

N

(7.13) (p Zn n)-I n (W1 + ... + Wk)0 L(W 1 + ... + Wk) -1
k=l

with probability one,

r

(7.14) p Ln (W1 + ... + Wr)l d . (W1 + ... + Wk)'- L(Wl+...+Wk)
k=l

Proof. (7.11) follows from (7.1) by definition of Un.

(7.12) follows from (7.11) by choosing n = W1 + ... + Wr

(7.13) and (7.14) follow similarly from (7.10).



8. APPLICATIONS TO SUMS

Let SO =0 , and Sn = X1 + . + Xn be the n-th

partial sum of a sequence Xn ) of independent and identically

distributed random variables.

Definition. A nonnegative integer n is called a

positive (or a strictly positive) ladder point if

Sn2> Si, 0 < i < n, (or Sn > Si, 0 < i < n),

respectively. A similar definition holds for negative

and strictly negative ladder points. The fundamental

fact about ladder points is that they are recurrent events.

From now on we shall denote the strictly positive ladder

points by e' and the negative ladder points by e". The

quantities defined in Sec. 2, when referred to these

events, will be denoted by a prime (e.g., NA) and a

double prime (e.g., W"), respectively. Thus, for

example, Nn' denotes the number of strictly positive

ladder points by time n, and (W"] the waiting times of

negative ladder points, etc.

In terms of the (W1], we define a sequence Zn as

follows. If Wj < , then define Z= Sw, while if W1 -

leave Z1 undefined. Suppose that Z1 , Z2 ... Zn have been

defined. Then define Zn+l - Sw! + ... + wl+l (Z1 + ... + Zn)

if W' < -, and leave Z undefined if Wn' . Thennln+l n+l
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(see [14]) the (Zk, Wk' are independent and identically

distributed bivectors. If Mr - max(O, S1 , S2 ... ,Sn)

and Ln is the time at which Mn first occurs, then

(8.1) Mn = 1 + Z2 + ... + ZNn'

(8.2) Y' "

A fundamental theorem due to E. S. Anderson [I] is the

following.

Theorem 8.1. (Equivalence Principle) If Qn and Q'

are respectively the number of positive and nonpositive

sums amongst SI, S2 ... ,Sn,, then Y' = Ln and Qn have the

same distribution, and Y" and Q' have the same distribution.

A simple proof of Theorem 8.1 can be found in (14].

From this theorem it follows at once that

n
(8.3) EIn = EQn = z P(Sk > 0),

k=l

n
(8.4) EYn" = EQA = Z P(S < 0),

k=l

and thus the results of Sec. 3 yield at once the following

theorem.

Theorem 8.2. e' is transient if and only if e" is

positive recurrent and
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(8.5) 1 - e' l (EW") = exp(- ; P(Sk > 0)/k
k=l

e' is positive recurrent if and only if e' is transient and

1S
(8.6) EW' = (l-e")- = exp ; P(Sk < 0)/k

k=l

(In (8.5) the

exp(- Z P(Sk > 0)/k
k=l

is taken to be zero if the series diverges. In (8.6) both

sides are finite or infinite together, and finite if and

only if

Z P(Sk < 0)/k <
k=l

If

n
(8.7) limr /n Z P(Sk > 0)/k p, 0 < p< i ,

n-• k=l

then
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i~W'

(8.8) (1 -E t ) - (l-t)p exp Z t(p- > 0))/
k-i

Furthermore, since P(Y. - n) - P(Qn = n) -

P(S 1 > 0, S 2 > O, ... , Sn > 0), a monotone function of n,

then conditions (4.3) and (5.4) are equivalent, and

(8.9) P(Ln = n) = P(YA- n) nP-ri/(p) LV(n)",

where

k

(8.10) LI(n) - exp Z (1 - .) (p - P(Sk > 0)
k=l

Remark. If, in particular the sums Sn are attracted

to a stable law with log characteristic function

(8.11) - C IlXI (1 + i p sgn X w(X,,)),

where 0 < a < 2, -1 < P < , C > 0 and

tan ra if a 1,

1747. if a- 1,

then (8.7) holds by virtue of the fact that lim P(Sn > 0) - p
n-rc

Moreover, in this case we have



(8.12) p - + I $ e- C sin(- C- w(ag)),
0

which for & # 1 can be explicitly evaluated* as

(8.13) p 1 + 1 arctan (- p tan c,).

To establish (8.12) let f(x) be the density of the stable

law in question. Then formally we have

+2p=f •sgn x f(x)dx m • f(x)dx sin g x dg
--e -- 0

* U

"2-- sin• x dg f--xP d

0 -

0
2 e- CCLsin(- C~ga w(g,a))dg

2 f e- C9 sin(- Cog w(9,cL))dg,

0

which for a p' 1 is

We are indebted to 0. Gross for showing that the formal
evaluation of p could be performed by the formal calculation
given here.
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fi e C sin(- cpO tan -r2 arctan - tan
0

(See table of Laplace transforms on page 125 of (13]). To

make this formal derivation rigorous, we must justify the

interchange in the order of integration used above. This

follows from the standard theorems (see e.g. Hobson's

Treatise of Real Variables, p. 349; Vol. 2-of the Dover

Edition) by observing that

aa

(a) f I sin "• f(x)I d dx < a for all finite a, L, P.
0 o,,

(b) Each of the required iterated integrals exist.

(c) sn d* . f(x)dx <,,, + f(x)dx
0 b- b

"- 0 as a -.- i, b

* U

(d) K f(x) sin x, < C/b O, b
.U b

where C is a positive constant.

For the special case when EXi - 0, var X = U2 < (L =2),

Spitzer in [16] has shown the following important result.

Theorem 8.3. If EXi = O, var Xi W C2 < a, then the series
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I-.

Z 1/k (1/2- P(Sk > 0))
k-i

converges, and if ly is its sum, then

(8.14) lim L'(n) - ey

n-eu

Furthermore, in this case EZI < % and

(8.15) EZI = a/lr eY.

From (8.14) we have that (8.9) improves to

(8.16) P(In - n) - P(Qn - n) - e" Y (nyr) 1/2 n-a,

as was found by Spitzer in (16]. Use of the above facts

enables us to translate all of the results of Sec 3-5

into results on the functionals associated with e'. As

examples we have the following.

Theorem 8.4. Suppose EXi = 0, var X = c2 < a and

0 < s < 1. Then

(8.17) lim P(Mn/aC-n < x, In/n :< y)
n-oa

- 1/T f f x e- y' 1 (l-y)-/ 2 dx dy,
00
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i

where x > O, 0 y<li

2
e- x /2s (x > 0)

(8.18) rnm P(Mr/cn < xLn - (sn])-
n-OW

0, x< 0

Proof. The strong law of large numbers asserts that

ZI + ... + znzi + EZl

with probability one. Thus,

Mn Z1 + ... + zNn

1F M 1~ EZ1n n

with probability one. In addition, we have

bn = nl/2/L (n) n1/2 e- , as n-

and consequently

EZI bn ~ u(n/2)l/2

Thus, by Corollary 4.2,
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lrn P(Mn/o4?i <x, Ln/n < y)

=lira M• n N n <),L/

- - • x, yn < y) - K,1/ 2 (C2 x, Y)4 ,

where K1/2 (x, y) is given in formula (4.22). This proves

(8.17), and (8.18) follows similarly from Theorem 5.3.

Remark. In the above proofs the only essential use

which was made of the assumptions EX - O, var X - a2 < a

was to guarantee that EZ 1 < 0. More generally we have that

lim P <x, -- < y = xC, y)
1 n / 0

llm P < x I Ln - [sn) ) hp(x) dx,

n -es 0

whenever X1 has a distribution for which EZI < - and (8.7)

holds. In particular, this will be the case if EX < 0 or

if (8.7) holds, EX = 0, and X1 is bounded above.

By using Theorem 6.7 and (8.9) we have the following

local form of the generalized arc-sin laws for Qn"

Theorem 8.5.

kl-P(n-k)-P P(Qn - k) . sin r r + o(1),
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where o(i) converges to zero uniformly in k, n, as

min(k, n-k) - - .

For the case when the (X n are aperiodic* integer-valued

random variables, a recurrent event which has been much

studied is the event Sn - O. The results of the preceeding

sections may be translated to give information about the

functionals associated with this event, by use of the

following lemma.

Lemma 8.6. If for some slowly varying function h(n)

and some m, 0 < a < 2, Sn/h(n)nI/l converges in distribution

to the stable law with log characteristic function given in

(8.11), then

(8.19) lim h(n)nl/& g(o) P(Sn - 0) - 1,
n-"*

where g(0)" 1 is the value of the density function at 0 of

the law given in (8.11).

Moreover, if a ý 1 then

( )r(l/c)[(c + i p tan ra)i/2 + (C - i 0 tan 7)1/m]
2Tra (C2 + '•2 tan2 T)I/C

while if a - 1 we have

U

(8.21) g(0V1  -a~ e-C cos(i C A X t.n )X)dX
0

e i e 1•I.e., IE e I " 1 if and only if S - 2nw for integer n.
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For the symmetric case (when p 0 0) we have

(8.22) g(O)i 0 < a<i2)

Proof. Equation (8.19) is an immediate consequence of

the local limit theorem for lattice distributions (see Sec.

50 of (10]). To evaluate g(O)" observe that if a py 1, then

g(°)" " : e - CIX ((l+i p sgn X tan r dX

--u

e-j e xx 8 (c xa P tan rd
0

= -1 e- CO Cos (C X p tan f) l/CL-I dX.

0

From the tables of Laplace transforms in [13] on p. 125, this

last integral may be evaluated. This results in the right-

hand side of (8.20). A similar calculation gives (8.21).

Remark. From (8.19) it follows at once that if the

Sn satisfy Lemma 8.6, then the event, "S n 0,1 is transient

if a < 1 and null recurrent if a > 1. We may then apply

the results of the previous sections to obtain information

about this particular recurrent event. As a novel application

we have the following.
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Theorem 8.7. Let Bi(x) for i < i < r be r functions

on the integers such that for each i,

(8.23) Z IBi(x)l < * and Z Bi(x) = hi • 0.
x

Then if (8.19) is satisfied for 1 < c < 2,

(8.24) lim P hi (Sk)/Bi Yn < xi' 1 < i < r; Ynn <
n-s k=O

r i Kli/,(x, y) dx dy,

0 0

(8.25) lim z Bi(Sk)/Biynf < x., 1 < i _< r Y n = [nsl)
n-.e k 0

-- ]" hl_l/ L(u) du,
0

where

Yn = nl-i/G/h(n) g(0)-I (1-1/a)-i

and Kli/•(x, y) is given in (4.21), hli/a(x) is given

in (4.18) and Yn is the time of the last return to zero.

Proof. As the proof of (8.24) and (8.25) are almost
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identical, we shall only prove (8.24). By Corollary 2,

Sec. 15 of [3], if Nn is the number of returns to zero

during the first n steps, then for each i, 1 < i < r,

n
(8.26) lir Z Bi(Sk)/Nn - Bi

n-- k=1

with probability one. Equation (8.19) implies that

ENn " Yn = nli/a/h(n) g(O)-I (l/s)-

and so by Theorem 4.2,

xy

(8.27) lim P(Nn/Yn < x, Yn/n _< y-) = j- j Kl-/,(x, y) dx dy.
n-. 0 0

Combining (8.26) and (8.27), we obtain (8.24).

To conclude this section let us note that whenever

the Sn satisfy the conditions of Lemma 8.6 for 1 < a < 2

we have that condition (6.3) is satisfied. Thus we may

apply Corollary 6.3 to obtain the following result.

If Nn is the number of zeros amongst the first n sums

Sn which satisfy the conditions of Lemma 8.6, then

lim P(Nn - J I Nn _ k) - (k+l)-.
n-oa



I
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APPENDIX

We present here the extensions of the Tauberian and

Abelian theorems which include Lemmas 5.4 and 5.5 as

special cases. The special case of theorem A.- for

L(x) = constant is due to Landau, and may be found on

p. 517 of (5] as Helfsatz 3. The Abelian Theorem A.4

can be found for the special case of L(x) = constant as

Theorem 4I on p. 98 of Hardy's famous treatise on

divergent series.

Theorem A.I. Suppose

t
(A.1) F(t) = du,

0

(A.2) 4(u) is monotone for u sufficiently large,

(A.3) F(t) - Aty L(t), " t-40

where y > 0 and L(x) is a slowly varying function (i.e.,

L(x) > 0 and L(ax) - L(x), x-,,for every positive a.). Then

(A.4) cp(t) - yAty- 1 L(t), t-.
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Proof. We shall assume that p(u) is positive and

monotone increasing if t is sufficiently large. Only

obvious modifications are needed to take care of the

other possibilities. Thus if t > To, e(t) is positive

and monotone. If 0 < a < 1 and t > To/m,

t

T(Mt)t(1-M) _< f e(u)du < m(t)t(l-a),
Cst

and so

•(MT) 1 1,(t)t F~mat)< (t

cp/at)/ty'l,, L(t) < F(t) - F(sxt) < rp(t)
-tY L(t)(1-a) -- t Y-I L(t)

Thus

(A.5) Tn t < A(I-mY) < lim m(t)/tY- 1 L(t)
t- ty-1 L(t) - -

Now



-59-
I

•__

IfTf ,•).mY,-1 :- L(t)
S t--f tY- L(t) t-(imt)y'l L(at)

-Trh u(t) , y- 1
t-- ty-I L(t)

Thus

Cy- m (t), < A -7 - -n- y. ~t
t -on t Y-1I -C L(t)---

Taking the limit as (-.1, we obtain

t-1 t-1 LP(t) < Ay < lrmt- y1 Lt)- T- t tY'1 L(t)

which completes the proof.

Corollary A.2. If (A.l), (A.2), (A.3) hold except that

y = 0, then we may conclude that

ep(t) = o(L(t)/t), t-.m

Proof. If y = 0, then (5) becomes

(A.6) Ti- SP(cxt) < 0 < lim
tY-1 L(t)-- -- tY'1 L(t)
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and the remainder of the proof is the same.

Corollary A.3. If the sequence ak, ak > 0, is

monotone, and

al + .. + a n - ny L(n), n-,,

then

(A.7) an - y nY-I L(n).

Proof. Choose cp(t) = an if n-i < t < n. Then

r p(t)dt = a, + ... + an = F(n),

0

and (A.7) follows from Theorem A.l.

Theorem A.4. If r > -1ý, s > -1 and a(x), b(x) are

integrable on any finite positive interval, and if

a(x) - xr L(x), b(x) - xs h(x),

for L(x), h(x) slowly varying functions, then
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(A.8) C(x) - jx a(t) b(x-t)dt
0

r(:r•l)r(s+l) h(x) L(x) 8 r+s+l 0
~ I(r,+s+2),x-.

Proof. Suppose 0 < 6 < 1/2, 6 r+4- < (r-l)c:i, 68+1 < (s+i)e

and

(A.9) y r(r+l)r(s+l)(A.9) V = Frs2
rkr4-s+2)

1 1-6

= Jur(l-u)s du < ur(l-u)s du + E

0 8

Write

6x (1-8)x x

c(x)-- +f + =Cl(x) + C2 (x) + C 3 (x)
0 8x (1-8)x

By the assumptions, there is some x 0 (-) such that if

x > x (e), we have
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(1-6)x

(1-6) Sur(X-U)s L(u)h(x-u)du
6x

(1-8) x

<C2(x) <(1+6) j U (x-u)B L.(U)h(X-U)du

6x

Thus,

1-8

(A.10) (1-6) Xrs+ L(x)h(x) 5 ~~hx VrlVs~d 2(x)

<(1+e)x tr 4s L(x)h(x) 5 ~vx1hX~-)) vr(1-v)a dv

Now, it is a basic fact of slowly varying functions that

L(ax)/L(x) converges to 1 as x-e uniformly in a, for a bounded

away from zero. (See [113).

Thus, from (A.10) we obtain

(A.11) Tim CNs+ L2(x) x) < (1F) - v r( 1v)s dv < (1+c)y

and



i

-63-

(A.12)C2(x) > (1- )• ur(l-u)s du > (l-e) y-_
x-o x L(x)h(x) - 6

Simple computations show that for some K > 0,

(A. 13) Cl(X) _ Krz L(x)h(x) x r~s+l ,

(A.14•) C C3 (X) I Ke n(x)h(x) x ~s'•l

Combining (A.II), (A.12), (A.13) and (A.14), we obtain

(A.8).

Corollary A.5. If (C(m)) is the mth-fold convolution

of (an I with itself and

a n - n-a/L(n), 0 < a < 1,

then

(A.15) Cn - L(n)"m n-ma~m-I r(l-(x)m/r(m(l-a))•

Proof. If we choose a(x) = an, n < x < n+l,

b(x) = bn, n < x < n+l, we obtain



r
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C(2) -r 2L(n) -2 n 2a+I

and (A.15) follows by induction.
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